

The coupled ocean/sea-ice adjoint model:

Current uses for sensitivity studies and state estimation

P. Heimbach⁽¹⁾, I. Fenty⁽¹⁾, D. Menemenlis⁽²⁾, M. Losch⁽³⁾, J.M. Campin⁽¹⁾, C. Hill⁽¹⁾

(1): MIT/EAPS, Cambridge, MA, USA

(2): JPL/NASA, Pasadena, CA, USA

(3): AWI, Bremerhaven, Germany

http://www.ecco-group.org http://mitgcm.org

• Part 1

Sensitivity studies

Arctic configuration & Canadian Arctic Archipelago

- Coarsened Arctic face of the ECCO2 global cubed sphere (from ~18 km to ~36 km horizontal resolution)
- Ocean model uses, KPP & GM/Redi, but off in adjoint
- 6-hourly forcing via NCEP/NCAR atmospheric state, converted to open-ocean air-sea fluxes via Large & Yeager (2004)

The MITgcm sea-ice model

- Thermodynamics
 - Based on Zhang & Hibler ,1997
 - Two-category, zero-layer, snow melting and flooding (Semtner, 1976; Washington & Parkinson, 1979)
 - Sea ice loading and dynamic ocean topography (Campin et al., 2008)
 - Salt plume parameterization (Nguyen et al., 2009)
- Dynamics
 - Two solvers available for viscous-plastic (VP) rheology:
 - Line Successive Relaxation (LSR) implicit (Zhang & Hibler, 1997)
 - Elastic Viscous-Plastic (EVP) explicit (Hunke & Dukowicz, 1997)
 - Both ported on C-grid for use in generalized curvilinear grids
 - Various advection schemes available
- An exact (with respect to tangent linearity) adjoint
 - generated via automatic differentiation tool TAF
- Losch et al. (submitted to Ocean Modelling, 2009a)
- Heimbach et al. (submitted to Ocean Modelling, 2009b)

The coupled ocean/sea-ice adjoint

Sensitivity of ice export to all elements in the coupled state:

- **sea-ice** (e.g. thickness, concentration, snow cover)
- ocean (temperature, salinity, velocities)
- atmospheric boundary condition (SAT, specific humidity, precipitation, shortwave radiation, wind velocity)

$$J = \frac{1}{\rho_{fresh}} \int_{\text{Oct 92}}^{\text{Sep 93}} \int_{\text{LC}} (\rho h c + \rho_s h_s c) u \, ds \, dt$$

Adjoint sensitivity of solid (snow & ice) freshwater transport through Lancaster Sound

Adjoint sensitivity to ice thickness of solid freshwater transport through Lancaster Sound

Perturbed - unperturbed ice export, testing the adjoint

Longitude-time diagrams of sensitivities (slice through Lancaster Sound)

Origin of sign change in precipitation sensitivities

Some Results & Outlook

- Complement configuration sensitivities (e.g. free-slip vs. no-slip boundary conditions) through aspects related to state space
- Adjoint model generated via automatic differentiation
- Adjoint sensitivities reveal pathways of ice export influences as function of underlying ocean/atmosphere state
- May reveal unexpected sensitivity behavior (e.g. here, sign of precipitation sensitivities)
- A crucial step to ascertain useful gradients for state estimation, which is the ultimate goal
- Coupled problem ought to propagate sensitivities across the model components;
 - → could be explored in state estimation
 - → obs of one component constrain the other component

• Part 2

Coupled ocean/sea-ice state estimation

Sea-ice state estimation in a limited-area setup of the Labrador Sea

- MITgcm with Curvilinear Grid
 - $-30 \text{ km x } 30 \text{ km} \rightarrow 30 \text{ km x } 16 \text{ km}$
 - 23 vertical levels
- 1.5 layer dynamic-thermodynamic sea ice model with snow
 - Stress-Strain rate based on Hibler (1980) ellipse
- Open boundaries
 - Weak sponge layers at Southern and Eastern edges
- Resolved Labrador and Greenland Shelves
 - Critical for sea ice production and advection
 - Important for boundary currents
- Computational efficient
 - Parallel: 1 real hr/ simulated year on 6 nodes

Bathymetry of model domain. Each distinct pixel is on cell

Ian Fenty (Ph.D. thesis, 2009)

Claims

- Adjustments to initial and boundary conditions (within known uncertainties) can bring a coupled sea ice-ocean model into consistency with observations
 - "Probably all models are different and wrong"
- By modifying the sea ice cover these adjustments significantly affect air-sea fluxes
- Using the adjoint method to synthesize model and observations can reveal systematic errors and biases with both

Labrador Sea Ice State Estimation Setup

- Datasets:
 - XBT, ARGO, CTD, The Levitus-Goureski Climatology
 - NCEP reanalysis
 - ECCO initial and boundary conditions (IT199)
 - Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I (BOOTSTRAP algorithm)
 - Reynolds Daily 0.25 degree SST

- Uncertainties
 - In situ using representation method of Forget and Wunsch (2007)
 - NCEP gleaned from various sources where estimates have been made
 - Sea ice gleaned from various sources, higher for lower concentrations
- State Estimation Controls
 - Initial T,S
 - Time varying open boundary U,V,T,S
 - Atmospheric: T, q, U, radiation

In situ Observations

Figure 1-1: Location of profiles for each of the one year periods colors represent: black - CTD casts, red - profiling floats, blue - XBTs

Atmospheric Adjustments

Conclusions

- The same model is shown to evolve quite differently based on reasonable adjustments to initial conditions and boundary forcing.
- Given the known model sensitivity to small changes to atmospheric forcing is there any information in the mean bias atmospheric adjustments that have utility beyond this specific model?
 - AOMIP participants could check this when basin-wide adjustments have been could be disseminated.

Thoughts about sea ice data assimilation

- Data sets
 - Prescribed or assimilated
- Atmospheric
 - Trustworthiness of renanalyses in high latitudes.
 - Validation in lower latitudes
 - Uncertainties not provided
- Choice of ocean state
 - Almost certainly the biggest unknown
 - Under many conditions direct assimilation of sea ice state is incompatible with ocean heat content/stratification
- Sea Ice
 - Different algorithms perform better under different ice conditions
 - Uncertainties are certainly time and space dependent
 - Not provided

- Formulation of sea ice model
 - Not obvious that more sophisticated sea ice models' adjoints will be useful
- Care of interpretation of adjustments
 - Model error is often overlooked
 - Atmospheric controls